Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Water Air Soil Pollut ; 234(6): 384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323133

RESUMEN

Due to the COVID-19 epidemic, the consumption of pharmaceuticals, especially paracetamol, has sharply increased on a global scale. The increasing concentration of analgesic and anti-inflammatory drugs (AAIDs) in the aquatic medium is a global problem for human and aquatic life. Therefore, simple and effective treatment options for removing AAIDs from wastewater after the COVID-19 pandemic are needed. The removal of AAIDs (acetaminophen, acetylsalicylic acid, codeine, diclofenac, ibuprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and phenylbutazone) from sewage treatment plant (STP) effluents by the prepared magnetite nanoparticles synthesized from red mud (mNPs-RM) is presented for the first time in this study. The removal efficiencies of AAIDs onto mNPs-RM were determined to be between 90% (diclofenac) and 100% (naproxen, codeine, and indomethacin). Acetaminophen (paracetamol) was used as a model compound in kinetic and isotherm model studies. The adsorption of acetaminophen was matched well with the pseudo second order kinetic model. Film diffusion governed its rate mechanism. The Freundlich isotherm model preferably fitted the adsorption data with an adsorption capacity of 370 mg/g at 120 min contact time at pH 7.0 at 25 °C. Furthermore, the regenerated mNPs-RM were used four times without affecting the adsorption capacity and the magnetic separability. mNPs-RM can be used as a simple, inexpensive and effective adsorbent for removing AAIDs from STP effluents. Also, low cost adsorbent obtained from industrial waste could be employed to replace the high cost activated carbons for the adsorption of other micro pollutants in STP effluents. Supplementary Information: The online version contains supplementary material available at 10.1007/s11270-023-06404-7.

2.
Sci Total Environ ; 784: 147174, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-33905924

RESUMEN

Psychological disorders due to the COVID-19 pandemic have increased the consumption of psychiatric pharmaceuticals on a global scale in last year. These compounds reach wastewater treatment plants (WWTP) through sewerage system and are not sufficiently removed by using conventional treatment process. Psychiatric drugs released with WWTP effluent may cause possible risks to the receiving aquatic environment. Also, two antidepressants have been included in the "watch list" in 2020. Therefore, simple and relatively cost effective removal of psychiatric drugs from wastewaters becomes important. Magnetite red mud nanoparticles (RM-NPs) synthesized was applied for the removal of psychiatric drugs (fluoxetine, paroxetine, carbamazepine, diazepam, and lorazepam) in WWTP effluent first time in this study. The adsorption of carbamazepine as a model compound was fitted well with pseudo-second-order kinetic model. The Freundlich isotherm model better represented the sorption data than the Langmuir model. High adsorption capacity (90.5 mg/g) was reached at 30 min contact time at pH 6.5-7.0 at 25 °C. The adsorption rate was described by the pseudo second order model and its rate control mechanism was controlled by film diffusion. The magnetite RM-NPs were efficiently used for the removal of carbamazepine from real WWTP effluents. The adsorption capacity and the magnetic separability of the regenerated magnetite RM-NPs were unaffected five cycles. Due to its simple application, low cost and high adsorption capacity, magnetite RM-NPs can be recommended as a better adsorbent comparing to commercial adsorbents to remove psychiatric drugs from WWTP effluents.


Asunto(s)
COVID-19 , Nanopartículas de Magnetita , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Óxido Ferrosoférrico , Humanos , Concentración de Iones de Hidrógeno , Cinética , Pandemias , SARS-CoV-2 , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA